Sonntag, 29. Mai 2016

Weiter mit Neurofeedbackübersetzungen Thompson.

Low-Pass Filter
Der Low-Pass Filter hat die Aufgabe alle für uns relevanten Frequenzen unterhalb eines Cut Off Wertes durchzulassen. Viele ältere Biofeedback Instrumente besaßen einen Low-Pass Filter mit einer Cut Off Frequenz von 32 Hz. Die heute gebräuchlichen Instrumente besitzen in der Regel die Möglichkeit, den Cut Off Punkt bei 62 Hz zu setzen mit der Möglichkeit, ihn tiefer einzustellen, etwa bei 40 Hz, um das EEG sauberer (weniger elektrische oder Muskelartefakte) und damit leichter lesbar zu machen. Dadurch werden Frequenzen, die oberhalb der gesetzten Schwelle liegen nicht mehr registriert. Der F1000 besitzt einen digital einstellbaren Low Pass Filter. Er ist eingestellt auf 61 Hz für ein Online FFT Display, das bis 63 Hz reicht. Während des Feedbacks wird das Gerät aber auf 45 Hz eingestellt, um den Einfluss der Störungen aus dem Stromnetz 50/60 Hz zu unterbinden. Der ProComp+ und Infiniti von Thought Technology besitzen Low Pass Filter, die auch über 61 Hz liegen. Dieser höhere Cutoff Punkt erlaubt die Beobachtung der höheren Frequenzen des EEG. Das ist wichtig, wenn wir versuchen kortikale Aktivität zu unterscheiden; zum Beispiel Rumination, also Gedankenrasen, bei 30 Hz, oder kognitive Bindungsaktivität bei ca. 40 Hz (Sheer Rhythm), von Muskelaktivität der gleichen Frequenz (EMG Artefakt). Elektrische Aktivität von Beleuchtung, Computern, Verlängerungskabeln, etc. ist gewöhnlicherweise sehr regelmäßig und völlig anders als das EEG und wird in den USA und Kanada bei 60 Hz, in Europa, Asien und Australien bei 50 Hz zu sehen sein.
Andere Störquellen sind eher ein Problem bei sehr hochauflösenden Geräten, weniger bei den älteren Instrumenten mit sehr niedriger Rauschtoleranz. Der Verstärker, den Trucker zur Funkkommunikation benutzen, verursacht beispielsweise einen Anstieg bei hohen Frequenzen, die absinken zu niedrigeren Frequenzen, wie Meereswellen am Strand.

Band Pass Filters
Ein Band Pass ist die Frequenzbreite (beispielsweise 4 bis 8 Hz) die vom Anwender gewählt wird zum statistischen Vergleich oder während des Neurofeedback. Während des Neurofeedback wählt der Anwender Frequenzbänder die begrenzen oder verstärken. Wie diese gewählt werden, wird im Kapitel über Interventionen näher erläutert. Einige Neurofeedbacksoftwares erlauben es dem Anwender die Art des Filters (IIR, FIR, FFT) und die Weite des gewählten Frequenzbandes zur Erhebung statistischer Daten oder zum Neurofeedback einzustellen. In anderen Systemen ist die Art des Filters vorgegeben und kann nicht gewählt werden.

Sampling Rate
Das Original EEG kann als analog oder kontinuierlich beschrieben werden. Diese Welle muss in kleine Pakete oder Samples aufgesplittet werden, um vom Computer verarbeitet werden zu können. Dieses Aufbrechen der kontinuierlichen Welle in kleine Bestandteile nennt man Sampling. Dieses Sampling wird von einem analog zu digital (A/D) Konverter vorgenommen. Moderne Inputs zum Enkoder benutzen immer die weiblichen Stecker. Diese werden benutzt, weil sie nicht versehentlich mit einer Stromquelle verbunden werden können, ein Fehler, der Schäden am Equipment, aber auch bei der damit verbundenen Person auslösen könnte.
Eine schnelle Sampling Rate ist von erheblicher Bedeutung zur Erlangung präziser Informationen. Die maximale Frequenz, die im Filter rekonstruiert werden kann, basiert auf dem Nyquist Prinzip, das bedeutet, dass, zur Erstellung akkurater digitaler Resultate, die Sampling Rate mindestens das Doppelte der maximalen Frequenz des analogen Signals besitzen muss. Technisch betrachtet erlauben 128 Samples in der Sekunde also die Beobachtung von Frequenzen bis 64 Hz, obwohl in der Praxis Geräte mit dieser Sampling Rate eben Frequenzen bis 32 Hz abbilden. Das ist die Basis des F1000 Online Spectral Display und annähernd die Rate, die von Lexicor gelesen wird. Andere Instrumente wie ProComp+ und Neuronavigator haben eine Sampling Rate von 256 Samples pro Sekunde, manchmal mehr. Thought Technology’s Infiniti besitzt eine Sampling Rate bis zu 2500[M1]  Samples pro Sekunde. Schnellere Sampling Rates erlauben es dem Anwender hohe EEG Frequenzen mit größerer Genauigkeit zu beobachten. Beispielsweise kann eine Sampling Rate von 256 Cycles in der Sekunde (cps) sehr präzise Frequenzen darstellen, bis zu einem Viertel der Sampling Rate, also 64 Hz. Auch eine Division durch 2 ist akzepabel, aber als Daumenregel gilt, die meisten Hersteller teilen die Sampling Rate durch vier, um eine annähernd optimale Genauigkeit der EEG Auswertung zu erlauben. Wir halten fest: um ein EEG Spektrum zu erhalten, das genau bis 64 Hz reicht, benötigen wir ein Instrument mit einer Sampling Rate von 256 Samples in der Sekunde. Um 32 Hz darzustellen genügen 128 Samples pro Sekunde. Hohe Sampling Raten sind wichtig zur analytischen Auswertung einzelner Wellenformen. Das wird auch als Oversampling bezeichnet und 8x bis 16x [L2] die maximale Frequenz ist heute eher der Standard.

Die Sampling Rate von  64 Cycles pro Sekunde, die von einigen älteren Instrumenten benutzt wird, erlaubt eine schnellere FFT Kalkulation. Das war wichtig für ältere, langsamere Computermodelle. Das bedeutet also, dass in Anbetracht der Sampling Rate in Relation zur Weite des Frequenz Bandes eine höhere Sampling Rate mehr Zeit zur Berechnung benötigt und dass dadurch das Feedback verzögert werden kann. Durch die hohe Leistungsfähigkeit moderner Computer ist das aber kein großes Problem mehr.

Eine zu niedrige Sampling Rate lässt das umgewandelte Signal langsamer erscheinen, als es in Wirklichkeit vor der digitalen Umwandlung war. Dieser Effekt wird aliasing genannt.


Im oben dargestellten Diagramm ist die aktuelle Welle die fett gezeichnete Linie und die inkorrekte Darstellung ist die unterbrochene Linie. Tatsächlich ist die Welle eine Theta Welle bei 6 Hz. Das kann man sehen, wenn 13 Samples (oder x Punkte auf der Zeichnung) genommen werden. Wenn man nur 5 Samples nimmt, und die Punkte verbindet, erscheint die EEG Welle digital als Delta Welle bei 2 Hz.
Wenn Sie sich selber eine Welle malen, die mit 42 Samples in der Sekunde gesampelt wird und wenn sie dann eine zweite Welle zeichnen, bei der sie nur jeden dritten Sampling Punkt nehmen, also insgesamt 14, werden sie sehen, dass die erste Welle 21 Hz hat, während die zweite gerade noch 7 Hz.
Zusätzlich zu einer ordentlichen Sampling Rate besitzt der analog zu digital Konverter (ADC) eine voltage range und eine bit number. Die Zahl der “bits” bezieht sich auf die Zahl der Amplituden Level, die aufgelöst werden können. Ein 8-bit ADC wird 28 oder 256 Amplituden Level besitzen. Das würde ±128 Discrete Voltage Levels in der Voltage Range die der ADC erlaubt, bedeuten. Zu wenige Bits bedeutet, dass kleine Anstiege in der Spannung überbetont werden. Außerdem bedeutet ein zu enger Spannungsbereich, dass eine große Spannung nicht angezeigt wird.


Filter
Drei Arten er digitalen Filterung sind: finite impulse response (FIR), infinite impulse response (IIR) und fast Fourier transform (FFT). Der FFT Filter kann einen erheblich schärferen Cut Off darstellen als der FIR Filter.  Beide Filter sind gut, um eine hinreichend akkurate Phase Relationship zu erzeugen. Der FIR Filter computed einen veränderlichen Durchschnitt digitaler Samples. Die Anzahl der Punkte, die gemittelt werden, wird Order andere Filter genannt. Einige Programme der Neurofeedbackinstrumente so das originale ProComp+/Biograph Programm, erlauben es sowohl die order als auch den Typ des Filters zu wählen. Jeder Filter schwächt die gleiche Frequenz in einer leicht unterschiedlichen Art; beispielsweise besitzt ein IIR Filter eine erheblich schärfere Steigung als ein FIR Filter. 

Die Bedeutung für die Ausübung des Neurofeedback liegt in der Erkenntnis, dass, wenn wir ein bestimmtes Frequenzband, sagen wir 4-8 Hz sampeln alle Frequenzen außerhalb dieses Bandes abgeschwächt, aber nicht vollständig eliminiert werden. Teilweise werden die Frequenzen an beiden Rändern des gewählten Frequenzbereichs in einem geringen Umfang, durch Anstieg oder Absenkung, Einfluss haben.
Die folgenden zwei Diagramme sind Illustrationen eines alten Instruments. Sie vergleichen einen FIR Blackburn Filter im ersten Diagramm mit einem IIR Butterworth Filter für die gleiche Bandbreite 13-15 Hz.

 FIR Blackburn Filter for 13-15 Hz

 IIR Butterworth filter for 13-15 Hz

Wir benutzen den IIR Filter zur Erstellung von statistischen Auswertungen, weil wir der Meinung sind, dadurch konstantere Resultate zu erhalten. Dieser Filter wird inzwischen auch von Thought Technology Instrumenten benutzt. Wenn eine präzise Analyse gemacht wird, zeigt sich, dass der IIR Filter so eng und präzise ist, das angezeigte 13-15 Hz  in der Abweichung höchstens bei echten 14 Hz liegen. Die exakte Range ist auch von der Order des IIR Filters abhängig. Um es nicht zu detailliert zu machen, merken Sie sich bitte eine simple Daumenregel: egal welchen Filter sie benützen, sie müssen immer den gleichen Filtern nehmen, wenn sie statistische Daten erheben, weil unterschiedliche Filter zu unterschiedlichen statistischen Werten in jedem EEG Band führen.

Dieses Diagramm zeigt ein Referential Ableitung an drei Punkten. Die aktive Elektrode ist an Fz, und die Referenz ist am linken Ohr, der Grund am rechten Ohr.




Darstellung eines NFB Systems
Dieses Diagramm zeigt die Basis Funktionen die gewöhnlicherweise vom Software Programm in Enkoder und Computer ausgewertet werden.
Filterung digital (hexagon) oder FFT (oval).
[L3] 

Ein Fast Fourier Transform (FFT) Filter, ist ein Programm im Innern des Computers, das die Informationen des EEG nehmen kann, um sie mathematisch umzuformen, um eine durchschnittliche Amplitudenhöhe für eine spezifische Frequenz in einer bestimmten Zeit zu ermöglichen. In der Folge entsteht ein Histogramm, in dem die X Achse Frequenz in Hz und die Y Achse Amplitude in Mikrovolt oder Power in Mikrowatt ist. Diese Art der graphischen Darstellung kann Klienten und Eltern verständlich machen, wie sich unterschiedliche mentale Zustände aus dem EEG ableiten lassen. Beispielsweise können Sie den Schüler bitten, mathematische Aufgaben im Kopf zu lösen. Stoppen Sie die Aufnahme unmittelbar nach der Antwort. Nun zeigen sie die Aufzeichnung und wie die Hirnaktivität sich veränderte. Sie könnten eine Sequenz wie die Folgenden beschrieben erwarten: Theta steigt an in linken frontalen Arealen, während der Schüler die Frage aus dem Gedächtnis abruft. Während er geistig arbeitet, kommt es zu einem Beta Anstieg. Theta fällt rasch wieder, aber Beta bleibt hoch, während der Klient rechnet und später die Antwort gibt.
Computer waren lange zu langsam für FFT Filterung. Inzwischen arbeiten aber alle Computer über 700 Megahertz. Das hat die Berechnungszeit verkürzt, so dass es heute möglich ist, FFT Displays auch zum Training zu benutzen.

Montage
Montage [L4]  ist ein Prozess bei dem man unterschiedliche Blicke auf die gleichen Daten erhalten kann, indem man eine Elektrode mit einer anderen Elektrodenposition oder Anordnung vergleicht. Jede Montage ist eine andere Kombination, eine Referenz für die aktive Elektrode zu nehmen. Bei 19 Kanal Ableitungen nimmt man gewöhnlicherweise die Linked Ear Montage um Daten zu sammeln. Die Montagewahl wird nach der Sammlung der Daten vorgenommen.

Beim Ein Kanal- Assessment und -Training, die wir beim NFB häufig benutzen, nehmen wir normalerweise das Ohrläppchen oder die Haut über dem Mastoid Knochen als Referenz. Durch diese Anordnung vermeiden wir größere Muskel Artefakte. Wir dürfen deswegen schließen, dass alle Veränderungen, die wir im EEG beobachten, an der aktiven Elektrode aufgezeichnet wurden. Bei einem Full Cap Assessment werden Linked Ear Montagen oft benutzt bei Common Electrode Reference Montagen. Wenn wir eine sequentielle oder bipolare Aufnahme machen, vergleichen wir zwei aktive Elektroden miteinander. Bei einem Full Cap Assessment werden sequentiale (bipolare) Montagen erstellt, indem man verschiedene Paare von Elektroden im 10-20 System miteinander vergleicht. Bei einer 19 Kanal Ableitung kann der Computer eine ganze Reihe verschiedener Montagen ermöglichen. Beispielsweise kann er eine aktive Elektrode zu einem Durchschnitt aller anderen Elektroden in Referenz bringen (average reference montage). Er kann die aktive Elektrode auch mit allen unmittelbar benachbarten Elektroden in Referenz bringen, Laplacian montage. Zur Diskussion der Laplacian Mathematik die Bezug zur EEG Analyse besitzt, sehen Sie Hjorth’s Artikel von 1980. Jede Montage ist nur eine andere mathematische Aufarbeitung der Daten, die von der Computer Software vorgenommen wird. Beispiele der Aufarbeitung gleichen Daten in unterschiedlicher Montage wie der sequentiellen und der Laplacian Montage werden im letzten Kapitel dieses Buches gezeigt, in dem Beispiele für Messungen gegeben werden.
Jede dieser unterschiedlichen Arten, die Daten auszuwerten, hat Vorteile und Nachteile. Die sequentielle (bipolare) und Laplacian Montage sind gut, um hohe, lokale Aktivität zu beobachten, die mehr in das Aufgabengebiet des Neurologen gehören. Die common reference Montage, ist sehr gut dazu geeignet, weit verteilte Aktivität im EEG zu entdecken und Asymmetrien zu analysieren. Man kann mit dieser Montage auch Artefakte erkennen. Sie ist aber ungeeignet, wenn man lokale Aktivität betrachten will. Eine sequentielle (bipolare) Aufnahme, kann ein geringes Theta und ein höheres Beta anzeigen als eine referentielle Aufnahme, weil Theta eine generalisiertere Aktivität als Beta ist und vom Differential Verstärker bei der sequentiellen Montage ausgesondert, weil auf beiden Seiten ähnlich gefunden wird.


Ausdrücke für elektronische Vorgänge
Elektrische Begriffe
Elektrische Kabel sind farblich gekennzeichnet. Normalerweise ist der Leiter schwarz und das bedeutet, diese Leitung ist gefährlich. Weiß bedeutet normalerweise neutral. Diese Leitung transportiert die elektrische Spannung, die vom Instrument stammt. Grün wäre dann die Farbe des Grundes. Wie auch immer, trauen sie niemals einer scheinbaren Selbstverständlichkeit. Lesen sie immer nach, wie ein Gerät, das sie benutzen möchten, elektrisch verkabelt ist und rufen sie einen Elektriker, wenn es gilt, elektrische Leitungen in ihren Praxisräumen zu verlegen. Farben können verwirren. Die EEG Kabel, die wir benutzen, sind farblich gekennzeichnet und benutzen einen anderen Farbkode als ihn der Elektriker kennt.

Kondensatoren
Kondensatoren werden von zwei elektrischen Leitern gebildet, die durch einen Isolator (z.B. Luft) getrennt sind. Ein Kondensator speichert eine Ladung. Dieses Konzept erklärt, warum es gut ist, keine Verlängerungskabel für das EEG Instrument zu nutzen. Wenn es eine Lücke gibt zwischen dem Verlängerungskabel und dem Stecker, haben sie bereits einen Kondensator gebastelt. Strom kann zwischen den Kabeln fließen von schwarz zu grün.


Optischer Isolator
In unserer Arbeit tun wir alles, unsere Klienten zu schützen. Optische Isolation gehört zu diesen Schritten. Damit ist gemeint, dass wir den Computer und den Enkoder durch ein Glasfieberkabel als optischen Isolator trennen. Ein optischer Isolator dient dazu, elektrische Signale zwischen zwei isolierten Stromkreisen per Lichtsignalen zu transportieren. Dadurch verhindert der Opto-Isolator hohe elektrische Spannungen und schützt den Patienten, den Computer und die Instrumente vor jeder unerwarteten Fehlfunktion im Stromkreislauf.
Die digitale Information aus dem Enkoder wird in ein optisches Signal verwandelt, das zum Computer gelangt. Der Computer wandelt es wieder in ein digitales Signal um, das er analysiert. Abgesehen vom sehr schnellen Datentransport über das optische Kabel, hat das System den Vorteil, den Klienten vom elektrischen Kontakt mit dem Computer abzuschirmen und damit vom Stromnetz. Gewöhnlicher Strom kann über das Glaskabel nicht transportiert werden. Der Enkoder muss seine eigene elektrische Quelle besitzen. Das ist bei Thought Technology ein Batteriepack, der nur sehr geringe elektrische Spannung erzeugt.


Elektrische Artefakte
Der Hersteller Ihres EEG Instrumentes hat sich sicher darum bemüht, Artefakte in der EEG Aufnahme zu minimieren. Es gibt aber trotzdem Vorsichtsmaßnahmen, die sie ergreifen können, wenn sie Elektroden anlegen. Trotz aller Bemühungen wird man aber elektrische Artefakte niemals ganz vermeiden können. Man sollte in der Lage sein, Wellen, die nicht  zum EEG gehören können, zu erkennen. Dieses Kapitel widmet sich nur den elektrischen Artefakten. Andere Arten von Artefakten, etwa solchen, die durch Eye Blinks oder EMG verursacht werden, werden in einem anderen Kapitel behandelt.  


Was kann Interferenzen erzeugen?
Elektrische Kabel arbeiten wie Antennen. Sie nehmen 60 Hz Aktivität oder 50 Hz Aktivität in Europa auf, die in ihrem Büro immer vorhanden ist. 

Einer unserer Biofeedbacktrainer mochte keine fluoriszierende Beleuchtung im Büro. Er brachte eine alte Stehlampe mit. Wir brauchten einige Tage, ehe wir begriffen, warum wir auf einmal nicht mehr in der Lage waren, in diesem Büro ein sauberes EEG aufzuzeichnen. Eine schlecht abgeschirmte Verkabelung in einer alten Lampe kann ihr EEG ruinieren.!

Die Elektroden Kabel können auch Radio Frequenzen aufnehmen. LKW mit CB Funkgeräten können negative Effekte auslösen. Diese Verstärker können den High Pass Filter überlagern und für hochamplitudige Störungen in vielen Frequenzen sorgen.
Aber selbst Bewegungen von Menschen im Zimmer können das EEG beeinflussen. Potential Differenzen zwischen Objekten der Umgebung und den Elektrodenkabeln, die am Kopf des Klienten befestigt sind, können in den Kabeln elektrische Störungen erzeugen. Das einfachste Beispiel wurde bereits erwähnt. Es ist der Schuh, der am Teppichboden reibt. Die Berührung eines anderen Menschen kann einen Funkenflug verursachen. Was wir als Kinder, die das lustig fanden, nicht wussten, war, dass 3,000 bis 10,000 Volt Spannungsdifferenz entstehen können. Stellen sie sich sich selber als einen Behälter vor, der im Gegensatz zu ihrem Klienten mit negativ geladenen Ionen überfüllt ist. Wie wir wissen, stößt negative Ladung negative Ladung ab. Wenn sie sich dem Klienten nähern, erzeugen sie kurzfristig eine elektrische Spannung in den Kabeln. Ohms Gesetz sagt, dass die Stromstärke umgekehrt proportional zum Widerstand ist Strom=Spannung:Widerstand I=U/R. Sie verändern den Strom (I). Deshalb verändert sich die Spannung. Sie wird sich bei ihrer Annäherung verändern. Elektrische Verkabelung, Licht und andere Instrumente können unerwünschte Ladungen erzeugen. Sie werden Ladungen in den Frequenzen beeinflussen, die die Quelle besitzt. Das ist in Europa 50 Hz, dieses Artefakt wird als sehr hohe Amplitude auftauchen, bis sie die Quelle finden und abstellen.



































 [M1]Note change to 2500
 [L2]We’ve been talking about 2x and 4x, I’m not understanding where 8x and 16x came from?
 [L3]fuzzy
 [L4]suggesting unbolding because it’s immediately following the bold heading

Donnerstag, 26. Mai 2016

Werbung Cognionics: in etwa übersetzt. EEG Trockenelektroden.

High Signal Quality

EEG Messungen sind in der Praxis schwierig. Trotz kontrollierter Laborumgebung gibt es Störfelder von Computern und anderen technischen geräten, die leicht die Messungen eines konventionellen unabgeschirmten EEG System überlagern. Zusätzlich können Bewegungsartefakte des klienten das EEg Signal überlagern. Um ein Alltags EEG möglich zu machen benutzt das Quick-20 eine hochoptimierte Kombination aus Sensoren, Mechanik und Elektronik um unerwünschte Artefakte zu minimieren.
  • Kombination von aktiven Elektroden und aktiver Abschirmung
  • Unbeeinflussbar von Elektrischen- oder Bewegungsartefakten
  • Echtzeitmessung von Sensorenimpedanzen
  • Professioneller Qualitätsverstärker. 24-bit ADC, low-noise, high dynamic range inputs with flexible configuration of sample rates, bandwidth and channels

Schnell, leicht und mobil

TDas Quick-20 ist ein komplett transportables EEG System in einem tragbaren leichten Form. Die Daten können kabellos erhoben werden mittels Bluetoth oder einer Aufnahme auf eine MicroSD Karte.
  • Low-noise Trockenelektroden die nur eine minimale Vorbereitung und kein Gel verlangen
  • Kabellos, 
  • Komfortabel zu tragen ohne Einschränkung der Beweglichkeit für den Klienten
  • Leicht und tragbar

Versatile

Wie allel Cognionics, ist das Quick-20 so gestaltet, dass es mit jeder Hardware und Software die advanced neuroscience research ermöglicht komaptibel ist.

Specifications

Kanäle
     

Volle 10-20 Kanalanordnung(19- Kanal plus Referenz und Grund), 
Extension Channels


( Optional: add on modul für Biofeedbackanwendungen
Sensor Type


Aktive Trockenelektroden mit aktiver Abschirmung
Impedance Monitoring


In Echtzeit mit EEG Beobachtung
Bandwidth


0-131 Hz at 500 samples/sec, 0-262 Hz at 1,000 samples/sec
Sampling Rate


500 samples/sec at 64 channels, 1,000 samples/sec at 32 channels & below
Resolution


24 bits per sample
Noise


0.7 µV RMS from 1-50 Hz, shorted inputs
Data Interface


Bluetooth wireless, Isolated USB wired (optional)
Storage


microSD and microSDHC
Motion Sensing


3-axis Accelerometer, each axis an additional channel
Power Supply


Lithium-ion, 4-hr Wireless, 8-hr SD Card
Triggering


Compatible with Cognionics wireless trigger

Zweites Video Cognionics NFB 19 Kanal dry Electrodsystem

https://youtu.be/s8kK9ks44HM

Zur Illustration Cognionics Video EEG 19 Kanal Dry Electrode


Trockenelektrodenhaube zum Neuroguide Training

http://www.cognionics.com/index.php/products/hd-eeg-systems/quick-20-dry-headset

Hier, passend zum letzten Post, das neue EEG System von Cognionics.
Unser größtes Problem in der Praxis ist im Grunde die Compliance der Klienten. Beim SCP Training werden Elektroden im Gesicht des Klienten notwendig. Beim klassischen ein Kanal EEG Training recht mitunter eine Klebeelektrode an Cz und zwei Ohrelektroden. In jedem Falle wird das Haar des Klienten beeinträchtigt. Wenn wir ein 20 Kanal Training anbieten, bei dem ich, aus eigener Erfahrung, geradezu sensationelle Ergebnisse beim Neuroguide LORETA Z Score Training mitteilen kann, muss eine EEG Haube angelegt werden, die wie eine Badekappe aussieht und 19 Elektroden besitzt, die mit einem Gel befüllt werden müssen, das den Kopfkontakt herstellt. Das dauert mit ein wenig Übung nicht allzulang und führt auch zu ordentlichen Ableitungen, aber es bleibt problematisch, dass das Haar des Klienten nachher einer Wäsche bedarf.
Trockenelektroden sind da sicher ein Traum und Cognionics bietet zum Preis von 18000 € ein solches System an, das man sich im lLnk oben näher betrachten kann.
Die Impedanzen werden mit einem sauberen Screen für alle Elektrodenpostionen vor dem Training leicht korrigiert. Das Anlegen soll in unter einer Minute erfolgen. Die Verbindung zum PC geht über Bluetooth. Es gibt also keine Kabel. Die Artefaktunterdrückung soll sehr gut sein. Die Filterung von Störsignalen ebenfalls. Kein Wunder, dass ich in diese Richtung schiele, obwohl der Preis exorbitant ist, zumindest in meinen Augen. Es handelt sich aber um ein aktives EEG System. Es bedarf keines weiteren Verstärkers. Es gibt noch andere reizvolle Tools bei Neuroguide: Learnig discriminants z.B, oder das Training evozierter Potentiale.
Ich habe aber bereits so viel Equipment, dass ich die Hälfte gar nicht benutze.
Trotzdem sind die neuen Entwicklungen interessant und Neuroguide Training bedeutete tatsächlich einen Quantensprung im NFB, was die Erfolge angeht. Ob Schlafstörung oder Mild Head Injury, ob Migräne oder ADHS, nach 20 Sitzungen waren stets bleibende Erfolge zu verzeichnen, die verblüffend waren, selbst für einen alten Hasen.

Das EEG Gerät. Instrumente und Verstärkung des EEG. Fortsetzung der Übersetzungstätigkeit

Kapitel IV  
EEG Messung:
Instrumente und Elektroden




Wenn wir das EEG mittels einer Elektroenzephalographie beobachten, messen wir die Potentialdifferenz zwischen Paaren kleiner Messelektroden. Die gemessene Spannungsdifferenz bewegt sich im Bereich von einem millionenstel Volt. Wir sind in der Lage sehr hohe, womöglich tausende Volt betragende Spannungen selbst zu erzeugen, indem wir die Füße auf einem Teppich hin- und herbewegen und eine andere Person berühren. Das Dilemma und die entscheidende Frage ist also, wie ist das EEG Instrument in der Lage, minimale elektrische Spannungen, die eine Gruppe von Neuronen im Gehirn erzeugt, zu messen und dabei den Einfluss erheblicher elektrischer Spannungen, die in der Umgebung ständig erzeugt werden, zu eliminieren? Um das zu klären, müssen wir erst erläutern, was eine Potential Differenz, was Strom und was elektrischer Widerstand überhaupt ist.

Vielleicht erinnern sie sich aus dem Physikunterricht an den Gleichstrom, den wir bei Taschenlampen benötigen und den die Batterien liefern. Tatsächlich gibt es eine Beziehung zwischen Potential Differenzen, die man in Volt misst, Stromstärke, in Ampere und Widerstand gemessen in Ohm. Diese Beziehung wurde 1826 vom deutschen Physiker Georg Ohm als Potential Differenz (V) = Stromstärke (i) x Widerstand (R ) postuliert. Die gleiche Formel beschreibt diese Beziehung beim Wechselstrom. (AC).  AC oder Wechselstrom ist der Strom aus der Steckdose, aber auch das, was wir im EEG messen. Die Formel lautet: Volt (V oder E) = Strom (I) x Widerstand (z). Impedanz ist ein komplexeres Konstrukt als der elektrische Widerstand, weil in seine Berechnung nicht nur der Widerstand der Transistoren sondern auch andere Faktoren wie Kapazität, Induktivität und die Frequenz des Wechselstroms einfließt. Diese Begriffe und   Impedanzmessungen, werden in diesem Kapitel noch genauer beschrieben.
In diesen Formeln bedeutet Strom die Rate der Elektronen die durch einen Leiter fließen. Diese werden in Ampere gemessen. Potential Differenzen kann man sich als gerichtete Kraft vorstellen, die dafür sorgt, dass der Strom in eine Richtung fließt. Der Strom fließt abhängig von der Potential Differenz zwischen der Quelle (Minuspol) zum Ziel (Plus Pol). Der Widerstand (oder die Impedanz beim Wechselstrom) ist dasjenige im durchflossenen Material, das sich dem freien Fluss der Elektronen entgegenstellt. R und z meinen beide diese Kraft. Dieser Widerstand gegen den Fluss der Elektronen ist sehr hoch in Substanzen wie Gummi, bei denen die meisten äußeren Elektronenbahnen gut gefüllt sind.  Das erschwert das Herauslösen einzelner Elektronen aus den äußeren Bahnen. Solche Substanzen sind gute Isolatoren, aber sehr schlechte Leiter.

Stromstärke meint die Größe des Transports einer elektrischen Ladung von einem Punkt zum anderen. (Ihr Stromversorger misst die Anzahl der Elektronen die einen Meter in jeder Sekunde passieren. Sie messen dabei in Ampere, wobei ein Ampere = 6.28 x 1018 Elektronen [Reihen) sind. Elektrische Ladung bezieht sich auf die negative Ladung, die von den Elektronen transportiert wird. Elektronen umkreisen den Atomkern auf verschiedenen Bahnen. Die Bahnen haben unterschiedliche Distanzen zum Kern, die man sich als unterschiedliche Energie Level vorstellt. Jede Bahn beinhaltet eine genaue Anzahl von Elektronen. Ganz Nahe am Kern befinden sich zwei Elektronen. Auf der nächsten Bahn sind es acht Elektronen, auf der nächsten 16. Es sind die Elektronen auf den äußeren Bahnen, die den Strom erzeugen. Diese Elektronenbahn kann unvollständig gefüllt sein. Wenn dass der Fall ist, werden Elektronenkollisionen möglich, die das Elektron zur Verlassung seiner Bahn anregen. Stellen sie sich vor, dass ein solches Elektron wie eine Billiardkugel agiert. Es kollidiert mit anderen Elektronen und wird von dem Atom, mit dem es kollidierte eingefangen, aber dessen angeregtes Elektron löst sich aus seiner Bahn und trifft das nächste Atom usw. usw. in einer Kettenreaktion. Es ist dieser Ablauf, der das erzeugt, was wir einen elektrischen Strom nennen.
In unserer Arbeit als Neurofeedbacktherapeuten benutzen wir die Potentialdifferenz zwischen einer Plus und einer Minus Elektrode um die Amplitude einen EEG Signals zu messen. Bei Hirnwellen wird der gemessene Strom in Microvolt (mV) ausgedrückt, wobei ein Microvolt ein millionenstel Volt ist.
Eine vielgenutzte Analogie zur Erläuterung von Strom ist der Wasserdruck in einem System, zu dem ein Wasserturm gehört. Die Höhe des Wasserturms bestimmt den Druck des Wassers in den Leitungen. Dabei ist der Druck ähnlich der Potentialdifferenz (Volt) in einem Stromkreis. Die fließende Wassermenge entspricht dem Strom, der Durchmesser der Röhren ähnelt dem Widerstand im Stromkreislauf. Ein schmaler Durchmesser wird den Stromfluss begrenzen. Dieser kann nur angehoben werden durch Erhöhung des Drucks (durch einen höheren Wasserturm) oder durch ein Absenken des Widerstands (durch größere Leitungen).
Das Gehirn produziert Wechselstrom. Dieser Strom kann als eine Sinuswelle dargestellt werden. Um die Amplitude dieser Welle zu messen, messen wir gewöhnlicherweise von der Spitze der positiven Welle zur Spitze der negativen Welle und wir nennen das Peak to Peak Messung.


Das EEG Instrument
Wie liest mein EEG Gerät das Signal und filtert unerwünschte elektrische Aktivität heraus?

Die Kopfelelektroden, die wir beim Neurofeedback benutzen sind Makroelektroden (>5mm), die in der Lage sind Mikrovolt Differenzen zwischen den Elektroden an zwei unterschiedlichen Positionen zu erfassen. Wenn man sich dem Klienten nähert kann das zu veränderten Stromstärken in den Kabeln führen. Fast in jedem Raum, den man zum Neurofeedbacktraining benutzt, wird man andere elektrische Quellen haben, die die Messung beeinflussen. Das einfachste, aber auch dramatischste Beispiel ist die statische Aufladung. Wenn man die Füße auf dem Teppich reibt und seine Hand zu einem Menschen bewegt, der vor einem sitzt, wird ein elektrischer Funke überspringen Die Potential Differenz zwischen beiden Menschen kann 10,000 Volt betragen. Der Strom ist trotzdem extrem schwach. Die Potential Differenz liegt im Voltbereich, aber wir messen Microvolt. Es wird den anderen Menschen nicht umbringen, aber es wird einen großen Einfluss auf die EEG Messung haben.
 [L1] Der erste Schritt zur EEG Messung benötigt somit einen Präamplifier. Also einen Vorverstärker.  Dieser verstärkt die minimale Microvolt Differenz um das 100000 fache und verstärkt keiensfalls irgendein anderes elektrisches Signal.  Der zweite Schritt besteht darin, dass man den analogen Wechselstrom in digitale Signale umwandelt, mit denen der Computer arbeiten kann. Dieser Prozess nennt sich Sampling.  Der dritte Schritt besteht darin, dass man das digitale Signal leichter lesbar und auswertbar macht, indem man es filtert, das bedeutet, indem man die Anteile des EEG zeigt, die interessant für die Auswertung sind, während man den Rest heraus filtert. Das nächste Kapitel wird diese Vorgänge genauer beschreiben.


Verstärker
Was ist ein Vorverstärker? 
Der Vorverstärker verstärkt den EEG Strom um ein Vielfaches damit andere Einflüsse aus der Umgebung klein und unbedeutend im Vergleich zum verstärkten EEG Signal bleiben. Er verstärkt nur die Voltdifferenzen zwischen den Inputs. Die Elektrode misst winzige elektrische Spannungen. Wir messen Millionenstel eines Volts (Microvolt). Wie bereits beschrieben kann bereits die Annäherung an einen Klienten durch induzierten Strom, erzeugt durch die Reibung des Fußes am Teppich z.B., eine Voltdifferenz zwischen Therapeut und Klient von tausenden Volt schaffen. Das wird den elektrischen Strom, der durch das Kabel vom Patienten zum Verstärker läuft, erheblich beeinflussen. Lange Kabel sind problematisch, können sie doch mehr Induktionsstrom erfassen. Kurze Kabel zu einem Vorverstärker, der an der Schulter des Klienten befestigt ist, oder an einem Stirnband, sollte dieses Problem verhindern. (Es gibt dann weniger Kabel, das wie eine Antenne funktioniert!) Andere EEG Instrumente haben den Vorverstärker im gleichen Gehäuse wie den Enkoder, das bedeutet immer längere Kabel und damit eine größere Gefahr andere elektrische Einflüsse aus der Umgebung aufzunehmen. Ein gut abgeschirmtes Kabel ist eine Möglichkeit dieses Problem anzugehen. Die Kabel des Focused Technology F1000 Equipment besitzen beispielsweise eine zweite Kabelschicht, die von außen kommende elektrische Einflüsse abschirmt, so dass diese keinen Einfluss auf das Kabel haben, das das EEG Signal des Klienten zum Vorverstärker leitet. Andere EEG Instrumente, so z.B. Thought Technologies ProComp+ und Infiniti, besitzen einen Vorverstärker, der am Kragen des Klienten befestigt werden kann. Dadurch können die Kabel zum Enkoder kurz bleiben.
Entweder hat das Instrument einen Vorverstärker in der Nähe der Elektroden, gut abgeschirmte Kabel oder beides, das Ziel ist es den Anteil von elektrischer Spannung, die das System beeinträchtigt, zu reduzieren.
Der Vorverstärker ist eine kleine Einheit, die im Idealfall so nahe an der Elektrodenposition befestigt wird, wie möglich, weil andere elektrische Einflüsse, nach der Verstärkung des Signals nur noch einen geringen Einfluss auf das gemessene EEG haben können. In Stermans Studie mit Top Gun U.S. Navy Piloten wurde der Vorverstärker in den vom Piloten getragenen Helm eingebaut und zwar an jeder Elektrodenposition. Das ist eine elegante aber sehr teure Lösung des Kabelproblems zwischen den Elektroden und dem Vorverstärker, um unerwünschte elektrische Einflüsse auszuschalten.

Kalibrierung eines Full Cap EEG Instruments wird hergestellt durch das Erstellen einer Standardspannung an allen Input Kanälen. Das garantiert, dass die gelesene Spannung in Ordnung ist und dass alle Inputs das Signal auf gleiche Art und Weise verstärken und filtern. Die meisten Neurofeedbackgeräte verlangen nicht nach einer Kalibrierung vor jeder Benutzung. Man wird nur dann Kalibrieren, wenn es Probleme gibt. Wir vermuten, dass Anwender in der Regel zwei EEG Instrumente besitzen. Wenn ein Problem vermutet wird, kann der Trainer die Elektrode am zweiten Gerät anschließen, um die Werte zu überprüfen.
Aber wie arbeitet der Verstärker?
Der Verstärker entdeckt und verstärkt Unterschiede zwischen zwei Inputs. Er verstärkt Veränderungen der Signale von jedem Input um denselben Wert aber in unterschiedliche Richtungen, in Bezug auf eine elektrische Referenz innerhalb des Verstärkers. Das tut er indem er die Polarität des zweiten Inputs umdreht, so dass beide Messungen voneinander subtrahiert werden können. Der Verstärker verstärkt nur die Differenz zwischen beiden Inputs, deshalb wird er auch Differential Verstärker genannt.

Um es bildhafter zu machen stellen sie sich bitte vor, dass sie einen Klienten an ein EEG angeschlossen haben, wobei eine Elektrode an Cz liegt und das andere an einem Ohrläppchen. Eine starke elektrische Störungen beeinträchtigt beide EEG Kabel mit der gleichen Amplitude und der gleichen Frequenz, Phase und exakt gleichzeitig. Idealerweise wäre nun nach der Subtraktion beider Störeinflüsse an den Inputs, die einzige Differenz zwischen beiden Ableitungen die winzige Mikrovoltspannung von der Elektrodenposition Cz, die von der Aktivität von Pyramidenzellen des Gehirns stammt. Wenn der Verstärker die Polarität des Inputs von einem Kabel wechselt, wird jede interferrierende Störaktivität ausgeschlossen und es wird nur die winzige Mikrovoltaktivität der Hirnzellen übrigbleiben, die dann vom Vorverstärker um ein Vielfaches erhöht wird.
Das meint man, wenn man sagt, der Verstärker unterdrückt Signale, die auf beiden Seiten des Inputs gleich sind. Das ist die so genannte Common Mode Rejection. Die Maschine ist so verdrahtet, dass bei größerer Negativität an Input 1 gegenüber Input 2 eine aufwärtsgerichtete Ablenkung des Signals erfolgt.

(Bemerken Sie: Das dritte Kabel, der Grund, am anderen Ohr des Klienten, hat keine Verbindung zum Boden oder Grund in dem Sinne wie wir das dritte Kabel einer elektrischen Leitung Grund nennen. Stellen Sie sich den Begriff “Grund“ vor als ein elektrisches Wächterkabel. Der echte Grund ist nicht mehr der Referenz Punkt für Messungen (Frank Diets, der Ingenieur, der das F1000 biofeedback/neurofeedback Instrument schuf)

Die Common Mode Rejection Ratio ist das Verhältnis des Common Mode Input Spannung dividiert durch die Volt Spannung des Outputs (Fisch, p43). Dieses Verhältnis sollt größer als 100,000 sein. Fehler in diesem System zur Eliminierung externer Common Mode Artefakte stammen entweder von zu großen Impedanzunterschieden zwischen zwei Elektroden oder einer schlechten „Ground“ Verbindung.

Eine zweite Verstärkung erfolgt nach der Filterung des Signals. Das wir eine Single-Ended Amplification genannt, weil es nur einen einzigen Input mit dem “Ground” vergleicht und dieses Signal verstärkt.


Filter
Ihr Verstärker besitzt zwei Filter, die dabei helfen, Störungen zu minimieren, die es schwierig machen würden, das EEG zu lesen. Es gibt den High-Pass Filter und den Low-Pass Filter. In einigen Instrumen wird diese Filterung bereits im Vorverstärker vorgenommen, der den Input von drei Elektroden erhält (Positiv, Negativ und Grund) In diesem Fall liegt er zwischen den Kabeln und dem Enkoder, der auf dem Tisch steht. Bei anderen Instrumenten befindet er sich im gleichen Gehäuse. Das Filtern erfolgt nach der Differentialverstärkung und vor der Single ended Verstärkung. Eine dritte Art der Filterung erfolgt durch den so genannten Notch Filter, der dazu dient, bestimmte Frequenzen wie 60 oder 50 Hz (Netzstrom in den USA/Europa) herauszufiltern. Diese Filter filtern nicht nur Frequenzen oberhalb oder unterhalb. Es ist ein komplexer Prozess um unerwünschte Frequenzen auszublenden, das bedeutet, deren Amplitude um einen gesetzten prozentualen Anteil zu mindern. Nähere Erläuterungen können sie in einem Lehrbuch über EEGs wie etwa das von Fisch (p46-54) entnehmen. Ein unvermeidbarer, unerwünschter Effekt des Low-Pass-Filters ist, dass er störende Artefakte wie Muskel Artefakte durch das Absenken der Amplitude und das Verlangsamen der beobachteten Frequenz dahingehend ändert, dass sie wie Bestandteile des beobachteten EEG erscheinen.

High-Pass Filter
Der High-Pass Filter hat die Aufgabe, die Ampitude der Wellen zu mindern, die in einer Frequenz unterhalb des Cut Offs gemessen werden. Er lässt nur Wellen passieren, die oberhalb der Cut off Frequenz liegen. Es handelt sich nicht um einen Alles Oder Nichts Filter, er sorgt eher für eine graduelle Eliminierung der Frequenzen. Die meisten Instrumente besitzen High Pass Filter bei 1 oder 2 Hz weil wir normalerweise nur nach Wellen sehen, die oberhalb von 3 Hz liegen, wenn wir klassisches Neurofeedbacktraining betreiben. In Krankenhäusern werden aber auch niedrigere Frequenzen zur EEG Beurteilung heran gezogen. Instruments wie der ProComp+ oder auch der Infiniti haben den High-Pass Filter bei 0.5 Hz. Delta Wellen können mit diesem Verstärker gut erkannt werden, obwohl man sorgfältig unterscheiden muss zwischen Delta Aktivität und Artefakten, die durch Augenbewegungen erzeugt werden.

Einige EEG Instrumente wie Lexicor, ermöglichen es, den High Pass Filter während des EEG ein oder auszuschalten. Während des Feedback wird man ihn aber eingeschaltet lassen. Ein niedriger Cut Off ergibt ein EEG, das Delta Aktivität anzeigt, was sinnvoll sein kann. Trotzdem können Interferenzen dafür sorgen, dass der High Pass Filter überfordert ist, wie etwa durch das Anlaufen eines Klimageräts oder einer Pumpe, die ein falsches Signal erzeugen, das der Amplifier zu spät entdeckt. Das daraus resultierende EEG könnte eine vereinzelte hohe Welle zeigen, die längere Zeit andauert, mit eingestreuten Harmonien oberhalb von Beta. Es gibt für jedes Design der High Pass Filter Argumente pro und kontra. Wenn wir über die EEG Instrumente sprechen, werden wir sehen, dass die Ingenieure Entscheidungen auf Grund von Abwägungen treffen mussten. Merken sie sich bitte, dass ein High Pass Filter eine Schwelle bei 0,5 bis 2 Hz setzt. Er wird deshalb auch Low-Frequenzy Filter genannt.



 [L1]This is repeated in the next paragraph, and it works better there.

Warum ein 1 Kanal Training